101 research outputs found

    A rapid and green determination of ammonia in indoor air

    Get PDF
    Sodium hypochlorite-salicylic acid spectrophotography method, Nessler's reagent spectrophotography method, ion selective electrode method and ion chromatography method are the common methods for detecting ammonia content of indoor air. This study compares the advantages and disadvantages of these methods in experiments. The sodium hypochlorite-salicylic acid spectrophotometry method has good correlation when the ammonia concentration is 0.5~5 μg/10mL, the result of the uncertainty evaluation is 0.792±0.132 mg/L, which is more close to the standard value. Moreover, the pre-treatment of this method is rapid and green. This study confirms the sodium hypochlorite-salicylic acid spectrophotography method as a rapid and green method for the determination of ammonia in indoor air

    Lys169 of Human Glucokinase Is a Determinant for Glucose Phosphorylation: Implication for the Atomic Mechanism of Glucokinase Catalysis

    Get PDF
    Glucokinase (GK), a glucose sensor, maintains plasma glucose homeostasis via phosphorylation of glucose and is a potential therapeutic target for treating maturity-onset diabetes of the young (MODY) and persistent hyperinsulinemic hypoglycemia of infancy (PHHI). To characterize the catalytic mechanism of glucose phosphorylation by GK, we combined molecular modeling, molecular dynamics (MD) simulations, quantum mechanics/molecular mechanics (QM/MM) calculations, experimental mutagenesis and enzymatic kinetic analysis on both wild-type and mutated GK. Our three-dimensional (3D) model of the GK-Mg2+-ATP-glucose (GMAG) complex, is in agreement with a large number of mutagenesis data, and elucidates atomic information of the catalytic site in GK for glucose phosphorylation. A 10-ns MD simulation of the GMAG complex revealed that Lys169 plays a dominant role in glucose phosphorylation. This prediction was verified by experimental mutagenesis of GK (K169A) and enzymatic kinetic analyses of glucose phosphorylation. QM/MM calculations were further used to study the role of Lys169 in the catalytic mechanism of the glucose phosphorylation and we found that Lys169 enhances the binding of GK with both ATP and glucose by serving as a bridge between ATP and glucose. More importantly, Lys169 directly participates in the glucose phosphorylation as a general acid catalyst. Our findings provide mechanistic details of glucose phorphorylation catalyzed by GK, and are important for understanding the pathogenic mechanism of MODY

    The BMP inhibitor follistatin-like 1 (FSTL1) suppresses cervical carcinogenesis

    Get PDF
    Follistatin-like 1 (FSTL1) is a cancer-related matricellular secretory protein with contradictory organ-specific roles. Its contribution to the pathogenesis of cervical carcinoma is still not clear. Meanwhile, it is necessary to identify novel candidate genes to understand cervical carcinoma’s pathogenesis further and find potential therapeutic targets. We collected cervical carcinoma samples and matched adjacent tissues from patients with the locally-advanced disease and used cervical carcinoma cell lines HeLa and C33A to evaluate the effects of FSTL1 on CC cells. The mRNA transcription and protein expression of FSTL1 in cervical carcinoma tumor biopsy tissues were lower than those of matched adjacent tissues. Patients with a lower ratio of FSTL1 mRNA between the tumor and its matched adjacent tissues showed a correlation with the advanced cervical carcinoma FIGO stages. High expression of FSTL1 markedly inhibited the proliferation, motility, and invasion of HeLa and C33A. Regarding mechanism, FSTL1 plays its role by negatively regulating the BMP4/Smad1/5/9 signaling. Our study has demonstrated the tumor suppressor effect of FSTL1, and these findings suggested a potential therapeutic target and biomarker for cervical carcinoma

    Does the built environment of settlements affect our sentiments? A multi-level and non-linear analysis of Xiamen, China, using social media data

    Get PDF
    IntroductionHumans spend most of their time in settlements, and the built environment of settlements may affect the residents' sentiments. Research in this field is interdisciplinary, integrating urban planning and public health. However, it has been limited by the difficulty of quantifying subjective sentiments and the small sample size.MethodsThis study uses 147,613 Weibo text check-ins in Xiamen from 2017 to quantify residents' sentiments in 1,096 neighborhoods in the city. A multilevel regression model and gradient boosting decision tree (GBDT) model are used to investigate the multilevel and nonlinear effects of the built environment of neighborhoods and subdistricts on residents' sentiments.ResultsThe results show the following: (1) The multilevel regression model indicates that at the neighborhood level, a high land value, low plot ratio, low population density, and neighborhoods close to water are more likely to improve the residents' sentiments. At the subdistrict level, more green space and commercial land, less industry, higher building density and road density, and a smaller migrant population are more likely to promote positive sentiments. Approximately 19% of the total variance in the sentiments occurred among subdistricts. (2) The proportion of green space and commercial land, and the density of buildings and roads are linearly correlated with residents' sentiments. The land value is a basic need and exhibits a nonlinear correlation with sentiments. The plot ratio, population density, and the proportions of industrial land and the migrant population are advanced needs and are nonlinearly correlated with sentiments.DiscussionThe quantitative analysis of sentiments enables setting a threshold of the influence of the built environment on residents' sentiments in neighborhoods and surrounding areas. Our results provide data support for urban planning and implementing targeted measures to improve the living environment of residents

    The prognostic association of SPAG5 gene expression in breast cancer patients with systematic therapy

    Get PDF
    Background: Despite much effort on the treatment of breast cancer over the decades, a great uncertainty regarding the appropriate molecular biomarkers and optimal therapeutic strategy still exists. This research was performed to analyze the association of SPAG5 gene expression with clinicopathological factors and survival outcomes. Methods: We used a breast cancer database including 5667 patients with a mean follow-up of 69 months. Kaplan-Meier survival analyses for relapse free survival (RFS), overall survival (OS), and distant metastasis-free survival (DMFS) were performed. In addition, ROC analysis was performed to validate SPAG5 as a prognostic candidate gene. Results: Mean SPAG5 expression value was significantly higher with some clinicopathological factors that resulted in tumor promotion and progression, including poor differentiated type, HER2 positive or TP53 mutated breast cancer. Based on ROC-analysis SPAG 5 is a suitable prognostic marker of poor survival. In patients who received chemotherapy alone, SPAG5 had only a moderate and not significant predictive impact on survival outcomes. However, in hormonal therapy, high SPAG5 expression could strongly predict prognosis with detrimental RFS (HR = 1.57, 95% CI 1.2-2.06, p = 0.001), OS (HR = 2, 95% CI 1.05-3.8, p = 0.03) and DMFS (HR = 2.36, 95% CI 1.57-3.54, p < 0.001), respectively. In addition, SPAG5 could only serve as a survival predictor in ER+, but not ER- breast cancer patients. Patients might also be at an increased risk of relapse despite being diagnosed with a lower grade cancer (well differentiated type). Conclusions: SPAG5 could be used as an independent prognostic and predictive biomarker that might have clinical utility, especially in ER+ breast cancer patients who received hormonal therapy. © 2019 The Author(s)

    (+)-Rutamarin as a Dual Inducer of Both GLUT4 Translocation and Expression Efficiently Ameliorates Glucose Homeostasis in Insulin-Resistant Mice

    Get PDF
    Glucose transporter 4 (GLUT4) is a principal glucose transporter in response to insulin, and impaired translocation or decreased expression of GLUT4 is believed to be one of the major pathological features of type 2 diabetes mellitus (T2DM). Therefore, induction of GLUT4 translocation or/and expression is a promising strategy for anti-T2DM drug discovery. Here we report that the natural product (+)-Rutamarin (Rut) functions as an efficient dual inducer on both insulin-induced GLUT4 translocation and expression. Rut-treated 3T3-L1 adipocytes exhibit efficiently enhanced insulin-induced glucose uptake, while diet-induced obese (DIO) mice based assays further confirm the Rut-induced improvement of glucose homeostasis and insulin sensitivity in vivo. Subsequent investigation of Rut acting targets indicates that as a specific protein tyrosine phosphatase 1B (PTP1B) inhibitor Rut induces basal GLUT4 translocation to some extent and largely enhances insulin-induced GLUT4 translocation through PI3 kinase-AKT/PKB pathway, while as an agonist of retinoid X receptor α (RXRα), Rut potently increases GLUT4 expression. Furthermore, by using molecular modeling and crystallographic approaches, the possible binding modes of Rut to these two targets have been also determined at atomic levels. All our results have thus highlighted the potential of Rut as both a valuable lead compound for anti-T2DM drug discovery and a promising chemical probe for GLUT4 associated pathways exploration

    Multilevel Features-Guided Network for Few-Shot Segmentation

    No full text
    The purpose of few-shot semantic segmentation is to segment unseen classes with only a few labeled samples. However, most methods ignore the guidance of low-level features for segmentation, leading to unsatisfactory results. Therefore, we propose a multilevel features-guided network using convolutional neural network techniques, which fully utilizes features from each level. It includes two novel designs: (1) a similarity-guided feature reinforcement module (SRM), which uses features from different levels, it enables sufficient guidance from the support set to the query set, thus avoiding the situation that some feature information is ignored in deep network computation, (2) a method that bridges query features at each level to the decoder to guide the segmentation, making full use of local and edge information to improve model performance. We experiment on PASCAL-5i and COCO-20i datasets to demonstrate the effectiveness of the model, the results in 1-shot setting and 5-shot setting on PASCAL-5i are 64.7% and 68.0%, which are 3.9% and 6.1% higher than the baseline model, respectively, and the results on the COCO-20i are also improved

    The Need for Cognition on Earthquake Risk in China Based on Psychological Distance Theory

    No full text
    There is a high need for cognition on earthquake risk to improve the public’s risk knowledge and risk awareness, so that they can make right decisions and take quick actions regarding mitigation measures and adjustments. In this study, search engine query data from the Baidu Index were extracted to reveal the information search behaviors of the Chinese public regarding the earthquake risk from 2010 to 2012. The data were also analyzed to discuss the characteristics of need for cognition on a nationwide scale and over the long term. The results showed that (1) graphic representations of need for cognition adhere to a “half-peak pattern” before and after earthquake events and (2) dimensions in psychological distance theory, such as temporal distance (time span between earthquakes), spatial distance, and social distance (geographic location) influence the need for cognition on earthquake risk that was the time and spatial discount effect. The implications for theory and practice regarding risk communication and management are discussed and concluded

    The mitochondrial genome of Anthalia sp. (Diptera: Empididae)

    No full text
    The dance fly Anthalia sp. belongs to the subfamily Ocydromiinae of Empididae. The mitogenome (GenBank accession number: MT483943) of Anthalia sp. was sequenced, the new representative of the mitogenome of the subfamily. The nearly complete mitogenome is 15,142 bp totally, consisting of 13 protein-coding genes, 2 rRNAs, and 22 transfer RNAs. All genes have the similar locations and strands with that of other published species of Empididae. The nucleotide composition biases toward A and T, which together made up 78.6% of the entirety. Bayesian inference analysis strongly supported the monophyly of Empidoidea, Empididae, and Dolichopodidae. It is clear that the phylogenetic relationship within Empidoidea: (Dolichopodinae + Neurigoninae) + ((Empidinae + (Trichopezinae + Oreogetoninae)) + Ocydromiinae) in this study
    corecore